

The Construction of the ICRF2 and its impact on the Terrestrial Reference Frame

K. Le Bail⁽¹⁾, C. Ma⁽²⁾, D. Gordon⁽¹⁾, D. MacMillan⁽¹⁾, S. Bolotin⁽¹⁾, J. Gipson⁽¹⁾

- (1) NVI Inc. GSFC/NASA, Greenbelt, MD, United States
- (2) GSFC/NASA, Greenbelt, MD, United States

Contents

- Introduction.
- The second realization of the International Celestial Reference Frame - ICRF2:
 - Overview and comparison with the first realization of the ICRF.
- Switch from the first realization of the ICRF to ICRF2:
 - Impact on the Earth Orientation Parameters (EOP), the Terrestrial Reference Frame (TRF) and the Celestial Reference Frame (CRF).
- Perspective and improvements:
 - The case of the Special Handling sources.
- Conclusions.

Introduction:

Very Long Baseline Interferometry (VLBI) gives the best realization of the International Celestial Reference Frame (ICRF)

- For imaging distant cosmic radio sources, spacecraft tracking, and for applications in astrometry.
- Measurements from distant sources (such as quasars) observed with a global network of antennas.
- Earth Orientation Parameters (EOP), station positions, radiosources coordinates.

Session G01S2: Reference Frames from Regional to Global Scales Wednesday, 29 June 2011

The International Celestial Reference Frame ICRF2

Characteristics and comparison with the first realization of the ICRF

ICRF2 characteristics and comparison with the first realization of the ICRF

- ICRF2 was adopted by the IAU in 2009 and became official on January 1st, 2010;
 - ICRF adopted by the IAU in 1997 and official on January 1st, 1998.
- Positions of 3414 sources (1448 in multiple VLBI sessions and 1966 in single VLBI sessions).

	ICRF	ICRF2
VLBI data	Aug. 79 – July 95	Aug. 79 – March 09
# VLBI Observations	~ 1.6 million	~ 6.6 million
# Defining sources	212	295
# Total sources	608	3414
Noise floor	~ 250 μas	~ 40 µas
Axis stability	~ 20 μas	~ 10 µas

ICRF2 characteristics and comparison

defining sources

ICRF2 defining sources

- ICRF2 defining sources characteristics:
 - Even distribution over the sky (study in four parts of the sky with a partition function of the declination);
 - Quality of the observations (positional stability of RA and DEC via WRMS, $\chi 2$ and formal errors);
 - Compactness of the source (source structure index);
 - Only 97 of the original 212 ICRF defining sources.

Impact of the ICRF change on TRF, CRF and EOP

Switch from the first realization of the ICRF to ICRF2

Impact on the Terrestrial Reference Frame

- Solutions compared:
 - ICRF2-based solution (gsf2010a):
 - Calc/Solve software;
 - A priori: ICRF2 catalog positions for the defining sources;
 - Solve for global source positions, but constrain on the adjustments of the defining sources such that there is no net rotation (NNR) of the set of defining sources;
 - Coordinates of 39 special handling sources solved as arc parameters;
 - Solve for daily EOP's and global site positions and velocities.
 - ICRF1-based solution:
 - Same setup and data;
 - ICRF1 defining sources and their ICRF1 positions for a NNR constraint;
 - The 39 unstable sources were not given special handling (global solution).
- Determination of the Helmert parameters of the two obtained sets of site positions and velocities.

Tx (mm)	Ty (mm)	Tz (mm)	Rx (µas)	Ry (μas)	Rz (μas)	Scale (ppb)
-0.08	-0.25	+0.26	+17.4	+2.9	-0.7	0.007
±0.17	±0.18	±0.16	±7.1	±6.8	±4.9	±0.022

Regional to Global Scales Wednesday, 29 June 2011

Impact on the EOP

- Daily Earth Orientation Parameters compared between the two solutions.
- Small systematic EOP differences about the same size as differences between quarterly solutions.

	Shift	Drift (yr ⁻¹)	WRMS	R1/R4 uncert.
p _x (μas)	11.1 ±0.8	-1.8 ±0.2	47.5	~40-150
p _y (μas)	-4.0 ±0.7	3.3 ±0.1	40.5	~40-150
dUT1(μs)	-0.5 ±0.1	0.07 ±0.10	2.8	~1.5-4.0
dX(μas)	37.6 ±0.8	-0.4 ±0.1	47.3	~30-100
dY(μas)	20.8 ±0.8	0.1 ±0.1	45.5	~30-100
p _x (μas/d)	2.3 ±2.2	0.2 ±0.4	125.0	~120-300
p _y (μas/d)	-2.2 ±2.1	0.0 ±0.4	122.0	~120-300
dUT1(μs/d)	0.05 ±0.09	-0.01 ±0.02	5.2	~4-10

EOP differences, ICRF2-based vs ICRF-based

Impact on the Celestial Reference Frame

 Rotation between the two solutions, using 1167 common sources:

A1(μas)	A2(μas)	A3(µas)
+17.8±0.5	-38.8±0.5	3.6±0.4

ICRF2-based - ICRF1-based

Session G01S2: Reference Frames from Regional to Global Scales Wednesday, 29 June 2011

Perspectives and improvements already done on the ICRF2

The case of the Special Handling Sources

The 39 "Special Handling" sources

Session G01S2: Reference Frames from Regional to Global Scales Wednesday, 29 June 2011

Special handling sources
211 most observed sources 13/15

Conclusions

- Progress on the ICRF:
 - The ICRF2 was build more automatically;
 - It contains much more data than the first ICRF;
 - The set of observed sources significantly increased;
 - The defining sources have more uniform sky coverage;
 - The WRMS and the noise of ICRF2 are significantly reduced in comparison with ICRF1;
 - The switch from ICRF1 to ICRF2 does not have a significant impact on the ICRF and the EOP.
- Small rotation of the CRF.
- But weakness: The network of stations is still poor in the South Hemisphere.
- Perspectives:
 - VLBI2010;
 - Study of sources positions in more details to search for structure and noise (Special Handling sources).

References

- IERS, 2009, IERS Technical Note 35
 - "The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry"
 - Fey, A.L., D. Gordon and C.S. Jacobs, (editors). Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main.
- Ma, C., E.F. Arias, T.M. Eubanks, A.L. Fey, A.-M. Gontier, C.S. Jacobs, O.J. Sovers, B.A. Archinal, P. Charlot, 1997
 - "The International Celestial Reference Frame Realized by VLBI"
 - In IERS Technical Note 23, "Definition and Realization of the International Celestial Reference System by VLBI Astrometry of Extragalactic Objects," C. Ma and M. Feissel (editors), Observatoire de Paris, Paris. (http://www.iers.org/TN23).
- Ma, C., E.F. Arias, T.M. Eubanks, A.L. Fey, A.-M. Gontier, C.S. Jacobs, O.J. Sovers, B.A. Archinal, P. Charlot, 1998
 - "The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry" AJ 116, 516-546.
- REFAG meeting Proceedings
 - "Effects of ICRF2 on the TRF, CRF, and EOP"
 - Gordon, D., C. Ma, D. MacMillan, S. Bolotin, K. Le Bail and J. Gipson.